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Abstract
A simple model of a passive scalar quantity advected by a Gaussian
non-solenoidal (‘compressible’) velocity field is considered. Large-order
asymptotes of quantum-field expansions are investigated by the instanton
approach. The existence of a finite convergence radius of the series is proved,
the type and the position of the singularity of the series in a regularization
parameter ε are determined. Anomalous exponents of the main contributions
to the structural functions are resummed using new information about the series
convergence and two known orders of the ε expansion.

PACS numbers: 47.10.+g, 47.27.Gs, 05.40.+j

1. Introduction

A model of a passive advection of a scalar admixture by a Gaussian short-correlated velocity
field, introduced by Obukhov [1] and Kraichnan [2] now attracts considerable interest.
Some first structural and response functions in this model demonstrate an anomalous scaling
behaviour and the corresponding anomalous exponents can be calculated explicitly as within
regular expansions in different small parameters as using numerical simulations. Thus this
model provides a good testing ground for various concepts and methods of the turbulence
theory like closure approximations, refined similarity relations, Monte-Carlo simulations and
renormalization group investigation.

We will discuss the last approach. The renormalization group produces results in a form
of some expansions and only a few first terms are known analytically. Different resummation
techniques are used to obtain reliable results [3]. The large-order asymptotic information of
the perturbation series for field-theoretic models is the base of critical exponents and scaling
functions series resummation [3]. The aim of this paper is to develop the instanton approach
for large-order asymptotic analysis in Kraichnan dynamic model.
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The advection of a passive scalar field ϕ(x, t) is described by a stochastic equation

∂tϕ − ν0�ϕ + g∂i (viϕ) = ξ(x, t), (1)

where ∂t = ∂/∂t, ∂i = ∂/∂xi , ν0 is a molecular diffusivity coefficient, � is Laplace operator
with respect to x, ξ is an artificial Gaussian scalar noise with zero mean and given correlator
Dξ, v(x, t) is a velocity field, g is a coupling constant; the sum in repeating indices here and
henceforth are implied. In Kraichnan model, v(x, t) obeys a Gaussian distribution with zero
average and the following correlator [8]:

D̃ij
v (x − x′, t − t ′) ≡ 〈vi (x, t)vj (x′, t ′)〉 ≡ Dij

v (x − x′)δ(t − t ′)

= D0δ(t − t ′)
∫

dk

(2π)d

P ⊥
ij (k) + αP

‖
ij (k)

(k2 + m2)
d/2+ε

eik(x−x′), (2)

where P ⊥(k), P ‖(k) are projectors with respect to vector k direction, d is a space dimension,
ε is the regular expansion parameter and an ultraviolet (UV) regularizator of the model, while
m is an infrared regularizator; α is a degree of compressibility: a coefficient representing non-
solenoidal modes contribution, D0 is an arbitrary amplitude regular in ε. The tensor indices
of correlator will be omitted and implied henceforth. Expressions (1, 2) describe passive
scalar advection due to the compressible fluid turbulent field. Some specific features of the
compressible models were studied in [4–6]. The small distance behaviour of the correlation
functions for (d = 1)-dimensional model in the convective range was investigated in [7].
Article [8] was devoted to the calculation of the relevant composite operators anomalous
exponents in the ε and ε2 orders of ε expansion using the renormalization group approach.
An exact anomalous exponent for pair-correlation function was calculated in this paper using
the exact solution for the single-time correlator. This result was confirmed in [9, 10] where
in particular the anomalous result for tracer model was obtained. The aim of our paper is to
investigate large-order properties of the ε series for the anomalous exponents of the composite
operators in the convective range in the model (1, 2) obtained by the renormalization group
approach and the improvement of these series. The exact anomalous exponent [8] for the pair
correlation function will be used to control the results obtained.

It was stated recently [11, 12] the absence of an instanton within the MSR approach [13]
in Kraichnan model and it is the Lagrangian variables that should be used at the steepest-
descent study of the structural functions 〈[ϕ(x1, t1) − ϕ(x2, t2)]n〉 in the large n limit. We
deal with another problem here, namely the large-order asymptotic investigation for the
perturbation series of the anomalous dimensions for arbitrary n. Thus we consider the
divergent parts at ε → 0 of the correlation functions investigated in contrast to [11, 12].
Generally different problem leads to the differing instanton solution. Nevertheless, we also
introduce the Lagrangian variables following [11] to construct an instanton.

Usually the perturbation series in the quantum-field theories are the asymptotic ones with
zero radius of convergence [3]. The situation is quite different in Kraichnan model: the exact
result for ϕ2 composite operator shows that these series have a finite convergence radius [8].
In this work we establish the following behaviour of the Nth term of the quantum-field series
in Kraichnan model in the large N limit:

γ (N) ∼ Nb

aN
, (3)

where b characterizes the type of singularity and a fixes the radius of convergence. Our
aim is to calculate a and b coefficients for anomalous dimensions of composite operators ϕn.
The large N behaviour combined with the known perturbative expansion allows us to extract
singularities from the series and to improve the convergence of the quantum-field expansions.
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Reference [11] results in an interesting statement about the saturation of the scaling
dimensions �n of the ϕn operators. Namely, they are predicted to have the finite limit value
at n → ∞. One of our purposes is to verify this statement for the compressible case on the
basis of the results of the resummation for two orders of ε expansion. The saturation effect
has been observed in Navier–Stokes flows in [16]. So this problem is relevant not only for the
Kraichnan model, but also for real flows.

We have to stress our results that are valid for the compressible fluid case only. As
concerns the model with the incompressible fluid considered in [11], our instanton solution
cannot yield the large-order asymptotes of the ε expansion of the anomalous exponents of the
non-trivial composite operators because of the vanishing of the fore-exponential factor at the
instanton found.

The paper is organized as follows. In section 2, the method of renormalization constants
calculation is discussed. The general stationarity equations in field variables are obtained in
section 3. The solution of these equations is described in section 4. In section 5, we deal
with the stationarity equations in coupling constant and coordinate arguments. The integration
over the scale parameter is described in section 6. Section 7 is devoted to a re-expansion of
the anomalous dimensions of the composite operators ϕn. The summary is written in the
section 8.

2. Large-order investigation of renormalization constants

The quantity of interest for Kraichnan model is, in particular, the infrared behaviour of the
single-time structural functions

〈[ϕ(t, x) − ϕ(t, x′)]n〉, r ≡ |x − x′|.
It is determined by anomalous dimensions γϕn of the composite operators ϕn, the former have
been calculated up to two orders of ε expansion [8].

Let us consider the response functions
∫

dx0 dt0〈ϕn(x0, t0)ϕ
′(x1, t1) . . . ϕ′(xn, tn)〉

represented in a form∫
dx0 dt0

∫
DvG(x0, t0, x1, t1) . . . G(x0, t0, xn, tn). (4)

Large-order investigation of this expression as a series in g is very difficult due to the
presence in equation (4) of the additional parameters such as m, xi , ti , ε that can constitute
different combinations comparable with the large parameter N of the steepest-descent method.
The same problem for the classical ϕ4 static model was described in [14]. Fortunately, as we
are interested in the anomalous dimensions γϕn , we can limit ourself by the consideration of
renormalization constants Zϕn of the composite operators ϕn

〈ϕnϕ′ . . . ϕ′〉R = Z−1
ϕn 〈ϕnϕ′ . . . ϕ′〉. (5)

Constants Zϕn are m and ν independent in the MS scheme and contain only poles with respect
to ε variable. They are connected with the UV divergences of the equal time (t1 = · · · = tn)

diagrams at zero external momenta. In the framework of ε regularization, that is similar to the
dimensional regularization, we can explore an analytical continuation to the ε < 0 region. In
this region, it is possible to set m = 0 in (2). This yields

Dv
ij (x) = D0

2−ε�(−ε/2)

(4π)d/2�(d/2 + ε/2)(d + ε)
|x|ε

[
(d − 1 + α + ε)δij + ε(α − 1)

xixj

x2

]
, ε < 0.

(6)
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The D0 parameter is fixed up to the finite renormalization that does not affect the critical
exponents. Let us then choose it equal to

D0 = �(d/2 + ε/2)(d + ε)2ε

�(1 − ε/2)�(d/2)d
, (7)

so that the first fraction in (6) contains a poles in ε only. It is then convenient to divide the
correlator discussed into three parts with different ε dependence

Dv(x) = D(x) + ∆(x) + ∆̄(x),

Dij (x) = − 2|x|ε
d(4π)d/2�(d/2)

(
δij + (α − 1)

xixj

x2

)
,

∆ij (x) = 2(d − 1 + α)

d(4π)d/2�(d/2)

1 − |x|ε
ε

δij , (8)

∆̄ij = − 2(d − 1 + α)

d(4π)d/2�(d/2)

1

ε
δij . (9)

Reference [14] was devoted to the modification of the steepest-descent approach for the
large-order asymptotes investigation of renormalization constants at the example of the well-
known static ϕ4 model in MS scheme and dimensional regularization. According to this
paper UV divergences have a meaning as the perturbation objects and must be treated as the
fore-exponential factors. So the factor exp(Sdiv), where Sdiv absorbs all the divergent terms
of the action that has to be expanded in the McLoran series in ε before the application of the
steepest-descent approach. As expressions (8) contain the UV divergences (at ε → 0, x → 0),
one need to include the corresponding terms to the divergent part of the action Sdiv and consider
them as fore-exponential factors. In section 6, we will see that these terms affect an amplitude
of the asymptotic only.

For ϕ2 operator, we can write in the Lagrangian variables using (4), [11]

〈ϕ2(x0, t0)ϕ
′(x1, t)ϕ

′(x2, t)〉 = M2
∫

Dv
∫ c1(t0)=c2(t0)=x0

c1(t)=x1,c2(t)=x2

Dc1Dc2Dc′
1Dc′

2

× exp

(
−1

2
vD̃−1

v v − νZνc′2
1 − νZνc′2

2 + ic′
1ċ1 + ic′

2ċ2 + igc′
1v(c1) + igc′

2v(c2)

)
×

[∫
Dv exp

(
−1

2
vD̃−1

v v
)]−1

, (10)

M ≡ 1

(4πνT )d/2

(∫ c(t0)=0

c(t)=0
DcDc′ exp(−νc′2 + ic′ċ)

)−1

, (11)

where T ≡ t0 − t . The integrations in times of the fields and the sum over the vectorial indices
of the fields and the tensor D are implied here and henceforth. Integration of (10) in v field
yields

M2
∫ c1(t0)=c2(t0)=x0

c1(t)=x1,c2(t)=x2

Dc1Dc2Dc′
1Dc′

2 exp
(−νZν

(
c′2

1 + c′2
2

)
+ ic′

1ċ1 + ic′
2ċ2 − uc′

1[D(c1 − c2) + ∆(c1 − c2) + ∆̄]c′
2

)
. (12)

Due to the δ(t − t ′)-type time dependence of D̃v (2) fields c1 and c2 in D(c1 − c2),∆(c1 − c2)

have an coinciding time arguments. It is worth while to scale u by ν to get a new fully
dimensionless coupling constant u. After the expansion of the factor Sdiv containing the UV
divergent part of action

Sdiv = −uνc′
1∆(c1 − c2)c′

2 − uνc′
1∆̄(c1 − c2)c′

2 − ν(Zν − 1)
(
c′2

1 + c′2
2

)
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(12) takes the form

M2
∫ c1(t0)=c2(t0)=x0

c1(t)=x1,c2(t)=x2

Dc1Dc2Dc′
1Dc′

2A
[2]B[2] e−S[2]

, (13)

where

S[2] = ν
(
c′2

1 + c′2
2

) − ic′
1ċ1 − ic′

2ċ2 + uνc′
1D(c1 − c2)c′

2, (14)

A[2] =
∞∑

j=0

(−uνc′
1∆(c1 − c2)c′

2)
j

j !
, (15)

B[2] =
∞∑

j=0

(−uνc′
1∆̄c′

2 − ν(Zν − 1)
(
c′2

1 + c′2
2

))j

j !
. (16)

These expressions can be generalized for 〈ϕn(x0, t0)ϕ
′(x1, t) . . . ϕ′(xn, t)〉 Green function.

It is represented by the path integral in ci , c′
i fields (i = 1, . . . , n) with the action

S[n] = ν

n∑
i=1

c′2
i − i

n∑
i=1

c′
i ċi +

uν

2

∑
i 
=l

c′
iD(ci − cl )c′

l . (17)

The normalization factor equals to Mn now. The boundary conditions are ci (t0) = x0, ci (t) =
xi . The pre-exponential factors A[n] and B[n] are similar to (15, 16) up to the additional sums
over i index of the fields ci , c′

i . Note that the latter play a role of generalized coordinates
and momenta for the action S[n]. So we can represent our system with a set of n moving
quasi-particles.

Now let us discuss the connection between the Green functions considered and the
critical exponents. The singularities of the Green function and of its renormalization constant
are related by the identity (5). The renormalization constant Zϕn determines uniquely the
anomalous dimension γϕn .

The left-hand side of (5) is free of singularities and, consequently, so does the right one:
the singularities of Zϕn are cancelled by those of non-renormalized function 〈ϕnϕ′ . . . ϕ′〉. We
could use this to compute the singularities of Z

(N)
ϕn by stating that

Z
(N)
ϕn 〈ϕnϕ′ . . . ϕ′〉(0) + Z

(N−1)
ϕn 〈ϕnϕ′ . . . ϕ′〉(1) + · · · + Z

(0)
ϕn 〈ϕnϕ′ . . . ϕ′〉(N) (18)

is finite. Henceforth, X(N) denotes the Nth order of the expansion for the value X in u. Usually
expansions in the quantum-field theories are the asymptotic ones with an exponential growth
of the coefficients. Such growth would make all terms in (18) except the first and the last ones
irrelevant as N → ∞. Then equation (18) could be easily resolved for Z(N) coefficients. The
existence of the non-zero radius of convergence will be shown for Kraichnan model. Then a
large set of terms in (18) becomes relevant and we face the problem of calculating of all the
terms 〈ϕnϕ′ . . . ϕ′〉(i), i < N : we cannot pick out all the singularities present in (18).

That is why we shall use the identity

ln〈ϕnϕ′ . . . ϕ′〉R = −ln Zϕn + ln〈ϕnϕ′ . . . ϕ′〉.
The lhs of the expression is finite again at ε → 0. To restore the Nth coefficient of the
expansion for ln Zϕn in u, we will investigate the residue in ε for McLoran expansion of
ln〈ϕnϕ′ . . . ϕ′〉. The ‘replica trick’ that is based on the identity

ln〈ϕnϕ′ . . . ϕ′〉 = lim
L→0

∂

∂L
〈ϕnϕ′ . . . ϕ′〉L,

will be used to treat ln〈ϕnϕ′ . . . ϕ′〉. The Green function in L-power in the last expression
is then substituted by the path integral representation of 〈ϕnϕ′ . . . ϕ′〉 with all integration
variables considered now as L-dimensional ones.
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3. Instanton analysis and immovable particles

As in classical works [3, 15], we add an integration
∮

du/uN+1 to produce the Nth order of the
perturbation expansion. Summarizing all the remarks mentioned above the Nth order term of
the expansion of ln Zϕn in u can be written as

(ln〈ϕnϕ′ . . . ϕ′〉)(N) = 1

2πi
lim
L→0

∂

∂L
residue

ε=0

∮
du

uN+1

L∏
β=1

∫
dTβ

∫
dx0β

×
∫

d(x2β − x1β)

∫
d(x3β − x1β) . . .

∫
d(xnβ − x1β)Mn

β

×
∫ {ciβ (t0β )=x0β }

{ciβ (tβ )=xiβ }

(
n∏

i=1

DciβDc′
iβ

)
A[n]

β B[n]
β exp

(−S
[n]
β − ik(x2β − x1β)

)
(19)

with the action S
[n]
β given by (17). The variables T , xi , ci , c′

i have now an additional replica
index β = 1, . . . , L.

Let us shift the variables to eliminate all the dependences of the path integral limits in
coordinates

ciβ(τβ) = c̄iβ(τβ) + xiβ − (xiβ − x0β)(τβ − tβ)

Tβ

, (20)

the new fields c̄iβ have zero boundary conditions. Sometimes we will return to the original
notation ci and we will omit the index β for brevity.

The steepest-descent approach must be applied to expression (19) with respect to all
integrations except the one over the scale parameter of the model that has an essential non-
instanton form. Indeed, overall UV divergences of interest arise from the integration over the
scale parameter and can be extracted with the help of the integration by parts. We will show
that at the instanton solution the value y = |x2β − x1β | does not depend actually on β and turn
out to be the scale parameter.

We proceed now to the finding of the saddle-point of the action in (19). Let us scale
the variables to figure out the N dependence of the action. The renormalization constants
considered are independent on renormalized diffusivity ν and k momentum so they can be
also scaled

c′
i → Nc′

i k → Nk, ν = η/N (21)

(we perform this scaling both for (19) and for the factor M integral representation (11); the
Jacobians arriving are constant and cancel out mutually). Such a scaling produces NndL/2

factor for the expression considered. The value S
[n]
β has now the following form:

S
[n]
β = N

η

n∑
i=1

c′2
i − i

n∑
i=1

c′
i ċi +

uη

2

∑
i 
=j

c′
iD(ci − cj )c′

j

 ≡ NS̃
[n]
β ,

all the fields are assumed to have the replica index β. In the framework of the instanton
approach, we vary the functional

S ≡ N
∑

β

(̃
S

[n]
β + ik(x2β − x1β)

)
+ N ln u

with respect to all the variables. The variations in c̄m, c′
m yield

δS

δc̄m

= 0 ⇒ −iċ′
m = uη

∑
l

l 
=m

c′
m

∂D(cm − cl )

∂(cm − cl )
c′
l , (22)
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δS

δc′
m

= 0 ⇒ iċm = uη
∑

l
l 
=m

D(cm − cl )c′
l + 2ηc′

m. (23)

The dependence on coordinates xi is represented in the functional S only by the fields
ci , cj (see (20)). So the variation in x0 yields the full momentum conservation law for the
quasi-particles

δS

δx0
= 0 ⇒

n∑
l=1

c′
l = 0.

The variations with respect to the coordinates (xm − x1) (m � 3) yield

i

T

∫ t0

t

dτ c′
m + uη

∫ t0

t

dτ
t0 − τ

T

∑
l

l 
=m

c′
m

∂D(cm − cl )

∂(cm − cl )
c′
l = 0, m � 3. (24)

Combining together (22) and (24), we get the equation

1

T

∫ t0

t

dτ c′
m − 1

T

∫ t0

t

dτ(t0 − τ)ċ′
m = c′

m(t) = 0. (25)

The last expression can be considered as a boundary condition at τ = t on the field c′
m(τ)

(m � 3). (22) is a first-order differential equation with respect to c′
m and has a zero boundary

condition (25). It has then the trivial solution

c′
m(τ) = 0, t � τ � t0 m � 3, β = 1, . . . , L (26)

that is locally unique. Equation (23) provides then

ċm = 0 cm(τ) = xm = x0 m � 3, β = 1, . . . , L. (27)

This means that the instanton sought for implies only a couple of quasi-particles in motion
while the other stay at the point x0. The saddle-point equations reduce then to the n = 2 case
with only four non-trivial fields c̄1, c̄2, c′

1, c′
2 (replica index β is assumed). Such a skewness

of the instanton is explained by the term k(x2β − x1β) of the variable action. Indeed, as we
are interested in the renormalization constants that do not depend on a conjugate momentum
running through the diagrams of the response function considered we have set all momenta
except k in (19) equal to zero. The momentum k cannot be zero since the response function
would diverge then. Note that this divergence is unrelated to the problem as it has a trivial
power form and does not affect on the radius of convergence analysed. Nevertheless, the
accurate treatment requires k 
= 0 that causes the skewness obtained.

Thus the analysis of the stationarity equations demonstrates the trivial solution (26, 27)
for the variables xk, k � 3. The problem reduces then to the ϕ2 case and we can limit ourselves
to the study of the saddle-point of the following non-trivial integral representation

1

2π i

∮
du

uN+1

∏
α

∫
dx0

∫
dx

∫ ∞

0
dT

∫
Dc̄1Dc̄2Dc′

1Dc′
2A

[2]B[2]M2 e−S[2]
α , (28)

that represents the case n = 2. Indeed, the substitution of (22, 23) to the expressions for
A

[n]
β , B

[n]
β reduces their values to the two-particle case A[2], B[2] and S

[n]
β as well.

Let us introduce new variables: p = c′
1 − c′

2, P = c′
1 + c′

2, q = c1 − c2, Q =
c1 + c2, q̄ = c̄1 − c̄2, Q̄ = c̄1 + c̄2. The fields q̄, Q̄ satisfy zero boundary conditions. The
variables introduced correspond to the centre-mass frame of reference of the quasi-particles.
Expression (28) transforms into

1

2π i

∮
du

uN+1

∫
dx0

∫
dx

∫ ∞

0
dT M2A[2]B[2]

∫
DpDq̄DPDQ̄ e−NS̃, (29)
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S̃ =
L∑

β=1

(̃
S

[2]
β + ikxβ

)
+ ln u, x = x2 − x1, (30)

S̃
[2]
β = − i

2
p

(
˙̄q +

x
T

)
− i

2
P

(
˙̄Q +

2x0 − x1 − x2

T

)
+

uη

4
(P + p)D(q)(P − p). (31)

All the variables in the right-hand side of (31) are assumed to have the replica index β. Zero
conditions on variations of the action S̃ in q̄, Q̄, p, P, x, x0 and u give the instanton equations.

It is convenient to carry out the calculation in two steps. First we solve the instanton
equations in fields P, Q̄, p, q̄ and the variable x0. We use this solution to simplify the functional
S̃. Then we vary the simplified functional S̃ in xβ and u we obtain saddle-point equations in a
simplified manner and we turn out to be successful in solving them.

4. Two quasi-particle saddle-point solution

The saddle-point of the action S̃ with respect to x0, Q̄, P, q̄, p is determined by the following
equations:

δS̃

δx0
= 0 ⇒ Ṗ = 0,

δS̃

δQ̄
= 0 ⇒ P = 0,

δS̃

δP
= 0 ⇒ iQ̇ = uηD(q)P + 2ηP,

δS̃

δq̄
= 0 ⇒ iṗ = uη

2

∂

∂q
[pD(q)p − PD(q)P],

δS̃

δp
= 0 ⇒ iq̇ = 2ηp − uηD(q)p

with the following boundary conditions:

q(t) = −x, Q(t) = x1 + x2,

q(t0) = 0, Q(t0) = 2x0.

To find the solution, we suppose that the vector p is parallel to q. In fact, one can show that this
is the only solution of the original system satisfying the given boundary conditions. Similar
to [11] the simplified system is trivially integrated

Q(τ ) = 2x0 = x1 + x2, P(τ ) = 0, (32)

p(τ ) = iq̇(τ )

2η − uηD(q(τ ))
, q̇(τ ) = I1(x)

T

√
2η − uηD(q(τ )), (33)

I1(x) ≡
∫ x

0

dz√
2η − uηD(z)

, D(z) ≡ − 2α|z|ε
d(4π)d/2�(d/2)

, (34)

where D(z) and x are the projections of the tensor D(q) and of x to the direction of p (index
β is implied for the time variables T , τ , all fields and the variables x, x).

The functional S̃ at the saddle-point reads

S̃ =
L∑

β=1

(̃
S

[2]
β − ikxβ

)
+ ln u, S̃

[2]
β = I 2

1 (xβ)

4Tβ

, (35)

with the replica index β indicated explicitly.
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Let us note that due to P = 0 the identity c′
1 = −c′

2 holds and the �̄-term in B[2] factor
(13) is cancelled out by the renormalization (Zν − 1) of the diffusivity ν and thus B[2] ≡ 1
(16, 8). The pre-exponential factor A[2] at the saddle-point is then given by

A
[2]
β =

∞∑
j=0

1

j !

(
−uηNI1(xβ)I�(xβ)

4Tβ

)j

I�(x) =
∫ x

0

�(z) dz
√

2η − uηD(z)
3 . (36)

5. A saddle-point solution over u and xβ

It is obvious that the variations in u and xβ of S̃ given by (30) and S̃ given by (35) are explicitly
the same. The form (35) is much more convenient: the variation with respect to u, xβ yields

δS̃

δu
= 0 ⇒

L∑
β=1

uηI1(xβ)I2(xβ)

4Tβ

= −1, (37)

I2(xβ) =
∫ xβ

0

dzD(z)

[
√

2η − uD(z)]3
,

δS̃

δxβ

= 0 ⇒ I1(xβ)

2Tβ

√
2η − uD(xβ)

= ik. (38)

These equations include Tβ parameter: we suppose that the solution exists. Substituting
it in expression (35), we derive the action S̃

[2]
β = NI 2

1

/
Tβ , i.e. the integration over Tβ has the

form ∫ ∞

0
dTβ f (Tβ) exp

(
−NI 2

1

Tβ

)
.

The convergence of this integral is assured by f (T ) factor that absorbs all the fluctuation
integrals over the fields and u, x0, x. It is easy to see that the main contribution to the
integration over Tβ at N → ∞ comes from the large Tβ region.

Let us return to equations (37), (38) analysis. The left-hand side of (38) is non-zero in the
Tβ → ∞ limit only if the value

√
2η − uD(xβ) is small (of order T −1

β ). On the other hand,
equation (37) is satisfied only for large values of I2, i.e as the denominator

√
2η − uD(z)

tends to zero at the point that tends to x + 0 for large Tβ . Therefore, the solution of the system
(37), (38) can be written at large Tβ as

xβ = y +
δβ

T 2
β

, u = 2

D
(
y + δ0

∑
β T −2

β

) (39)

with δ0, δβ being some constants and y being an arbitrary scale parameter. The substitution
of this solution in equations (37), (38) allows us to calculate δ0, δβ constants. In the limit
T → ∞ this saddle-point reads in terms of xβ, u

xβ = y
k
|k| , β = 1, . . . , L, u = 2

D(y)
.

The presence of an arbitrary scale parameter y is the usual fact in the instanton analysis of
the scale invariant models [15]. The correct work around supposes an insertion of a unit
decomposition in the initial expression (19)

1 ≡
∫ ∞

0
dy δ(y − |xβ=1|).
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The integration over the scale parameter is then carried out explicitly by the Faddeev–Popov
method. It has the non-saddle-point form and its singularities at ε → 0 determine the
renormalization constants and the critical exponents (the same problem arrives for ϕ4 model
[14]). The δ-function mentioned above plays an important role: it resolves the so-called
zero-mode problem [3] of carrying out of the integration over the fluctuations. This produces
an additional

√
N factor as contribution of the ‘zero mode’ in the numerator of the fluctuation

integral. The additional factor N−(ndL+1)/2 arrives from the fluctuation around saddle-point
integral over the variables u, x0, xiβ (i = 2, . . . , n, β = 1, . . . , L). Together with NndL/2

factor arrived from the scaling (21), the total power of N reduces to unit.
The last question we have to discuss in this section is the saddle-point method applicability.

It should be mentioned that the fluctuation integration can be carried out at ε = 0. Though
the longitudinal projector

P
‖
ab = (ci − cj )a(ci − cj )b

(ci − cj )2

in the correlator (2, 6) cannot be expanded in the series of the fluctuations of immovable
quasi-particles variables (i, j > 2) with respect to the saddle-point, the integration over these
fluctuations (δci , δc′

i , i > 2) is Gaussian and can be correctly performed by the means of
transition from the path integral in δc′

i (i > 2) to the integration over δc′
i||, δc′

i⊥ fields that
represent the longitudinal and transversal projections of δc′

i field on the δci direction.
The consistent analysis of higher variations of the action (17) around the saddle-point

demands their study in the large T limit since this region contributes mainly to the integration
over T. Using the explicit solution (32, 33) one can show that higher variations of the action
are finite in the large Tβ limit. This assures the consistency of the instanton approach and the
existence of the fluctuation integral.

6. The integration over the scale parameter

Finally, the result of the instanton approach is

ln Z
(N)
ϕn ∼ lim

L→0

∂

∂L
residue

ε=0

KL

∫ ∞

0

dy

y

(
D(y)

2

)N

κ(y)

L∏
β=1

A
[2]
β

 . (40)

The factor KL arises from the L-dimensional integration over T. The function κ(y)(κ(0) <

∞) results from the fluctuation integrations, besides the factor
∏

β ei|k|y is also included in
κ . The factor 1/y is extracted from the fluctuation integrations without explicit calculation by
the means of the dimension analysis. Indeed, the value ln Zϕn is determined by logarithmic
divergences of the diagrams of 〈ϕ2ϕ′ . . . ϕ′〉(N). This gives the logarithmic behaviour in y of
the integral (40). The convergence of (40) for large y is assured by κ(y). Let us remind that
this factor depends also on L.

Using formula (39), we note that I�(xβ) ∼ Tβ at the saddle-point, so (36) can be rewritten
as

A[2] =
∞∑

j=0

1

j !

(
−K(ε)N(1 − yεf (ε))

ε

)j

with K(ε) and f (ε) being regular functions in ε,K(0) 
= 0, f (0) = 1. The extraction of UV
divergences (i.e., poles in ε) has to be executed in the framework of the formalism developed



Large-order asymptotes for Kraichnan model 7811

in [14]. The parameter Nε is supposed to be small. Using the explicit formula for D(y) (34)
the divergences at ε → 0 can be easily extracted by integration by parts∫ ∞

0

dy

y
yNεκ(y)

(1 − yε)j

εj
= κ(0)

εj+1

j∑
s=0

(−1)j−sj !

(N + s)s!(j − s)!
.

Due to the choice of Dv correlator (see definition of D0 constant in (7)) there are no Nε

corrections in (40). Then A[2] term does not affect the position and the type of the singularity
and contributes in the large N limit to the amplitude of the asymptotes only. The final result
for the simple pole in ε of the renormalization constant series in u reads

ln Z
(N)
ϕn ∼

{
− α

(4π)d/2�(d/2)d

}N

. (41)

7. Resummation of anomalous dimensions

We proceed now to the critical exponents �ϕn analysis. The general expression for critical
exponents is

�ϕn = dϕn + γϕn = n(−1 + ε) + γϕn,

where dϕn and γϕn stand for the canonical and anomalous dimensions of the composite operator
ϕn. Our main goal is to analyse the expansion of the anomalous dimension γϕn in ε using the
information about the series singularities. The latter are of the main interest since they can be
used to resum the series. General theory [3] provides

γϕn = Dµ ln Zϕn = β(u)
∂

∂u
residue

ε=0
[ln Zϕn ]

∣∣∣∣
u=u∗

= −2u
∂

∂u
residue

ε=0
[ln Zϕn ]

∣∣∣∣
u=u∗

, u∗ = 2ε
(4π)d/2�(d/2)d

(d − 1 + α)
, (42)

where u∗ is a fixed point that is known exactly for Kraichnan model.
The substitution of (41) into formula (42) gives the transformation of u-expansion of the

anomalous dimension γϕn to the series in ε considered at the large order of perturbation theory

γϕn =
∑
N�0

γ (N)
ϕn

εN , γ
(N)
ϕn ∼

[ −2α

(d − 1 + α)

]N

.

The absence of a power term Nb in the asymptote (i.e., b = 0 in (3)) indicates the
simple pole singularity. The position of the nearest singularity εc in the anomalous dimension
expansion in ε (which also gives the convergence radius Rc) reads

εc = −d − 1 + α

2α
, Rc = |εc|.

This is used to resum the γϕn series: we extract the singularity of the expansion adopting
simple rational representation

γϕn =
∞∑

k=1

γ
(k)
ϕn εk =

∑∞
k=1 γ̃

(k)
ϕn εk

ε − εc

.

The new coefficients γ̃
(k)
ϕn are calculated via the term by term comparison of the expansions

giving the following coefficients (n = 1, 2)

γ̃
(1)
ϕn = −γ

(1)
ϕn εc, γ̃

(2)
ϕn = γ

(1)
ϕn − γ

(2)
ϕn εc.
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We now need the values of the coefficients γ
(k)
ϕn to carry out the resummation. The

anomalous dimension γϕn, n > 1 is calculated up to the second order in [8] and the coefficients
are given by the formulae

γ
(1)
ϕn = −αn(n − 1)d

d − 1 + α
,

γ
(2)
ϕn = 2

α(α − 1)n(n − 1)(d − 1)

(d − 1 + α)2
+

α2n(n − 1)(n − 2) dh(d)

(d − 1 + α)2
,

h(d) =
∞∑

k=0

k!

4k(1 + d/2) . . . (k + d/2)
= F(1, 1; 1 + d/2; 1/4),

here F is the generalized hyper-geometric function. The resummation is then straightforward
giving the following coefficients γ̃

(k)
ϕn , k = 1, 2

γ̃
(1)
ϕn = −n(n − 1)

d

2
, γ̃

(2)
ϕn = −n(n − 1) +

α(n − 2) dh(d)

2(d − 1 + α)
,

and the anomalous dimension

γϕn = − 2αn(n − 1)ε

d − 1 + α(1 + 2ε)

[
d

2
+ ε − αd(n − 2)h(d)

2(d − 1 + α)
ε + O(ε2)

]
. (43)

Fortunately, this result can be verified: for n = 2 the exact value of the anomalous
dimension is known

γϕ2 = − 2εα(d + 2ε)

d − 1 + α(1 + 2ε)
,

while the resummation (43) for anomalous dimension γϕ2 , n = 2 yields

γϕ2 = −2αε[d + 2ε + O(ε2)]

d − 1 + α(1 + 2ε)
.

We see that no high-order corrections to the resummation result occur in this case;
resummation gives the exact answer, the singularity found for Zϕ2 is unique. This case
illustrates that information about the type and the position of the singularity allows us
appreciably supplement the information provided by the direct perturbation expansion.

8. Conclusions

This paper demonstrates that the instanton approach applies to the large-order analysis of the
dynamic model. We can state that the study of the behaviour of the convergent series is a
more difficult problem than that for the divergent ones. Using the instanton approach one
can state that the perturbation series for the scaling dimensions of the operators considered
are convergent with the finite convergence radius calculated. In each case the information
about singularity type of the series permitted to accelerate considerably the convergence of
the series.

Concerning the saturation problem [11] one can say that our results do not prove its
existence. It is possible that two orders of the ε expansion are not sufficient to observe the
saturation. Another possibility is that at large n the series for critical indices acquires an
essential singularity. Indeed, we show the radius of convergence Rc is not depending on n.
But in our framework, we cannot discuss the poles in ε outside the circle of convergence and
theirs behaviour at n → ∞.

Nevertheless, the value of indices obtained is of importance as an improved result of ε

expansion.
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